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Philip Saffman made valuable theoretical contributions to different areas of low-
Reynolds-number hydrodynamics. Three themes are selected for discussion here: (i)
the lift force on a sphere in a shear flow at small, but finite Reynolds number,
(ii) Brownian motion in thin liquid films, and (iii) particle motion in rapidly rotating
flows. In addition, brief descriptions are given of some of Saffman’s other contributions
including dispersion in porous media, the average velocity of sedimenting suspensions,
and compressible low-Reynolds-number flows.

1. Introduction
Philip Saffman made many outstanding and original contributions to fluid dynamics

during his research career. A glance at his list of publications shows that in the twenty
year period 1956–1976, he studied, sometimes in collaboration and other times by
himself, a wide variety of viscous flow problems. Arguably the most well-known of
these research investigations is the phenomenon of viscous fingering, i.e. the Saffman–
Taylor instability. Many of Saffman’s other studies of low-Reynolds-number flows
seem to be much less widely known and the main goal of this paper is to introduce
the reader to these different investigations, their principal conclusions, and some of
the modern extensions.

By way of introduction, Saffman published three articles in volume 1 of the Journal
of Fluid Mechanics. Two of these papers concerned particle dynamics at low Reynolds
numbers. The first examined the rise of small air bubbles (Saffman 1956a) and
presented both experiments and theory to characterize the change in the bubble’s
trajectory from a vertical straight line to a zig-zag path (motion confined to a vertical
plane) or to a spiral motion. The reader may recall similar phenomena while observing
bubbles in champagne. This research topic still has open questions concerning the
detailed dynamics of the zig-zag and spiral trajectories, as well as the transition from
one to the other, and is an active area of investigation, e.g. see the recent review by
Magnaudet & Eames (1999). The second of these papers (Saffman 1956b) concerned
the orientational motion of nearly spherical particles in a simple shear flow. As
described by Batchelor (1976), G. B. Jeffery (1922) had originally shown that, in a
zero-Reynolds-number flow, there is a one-parameter family of possible orbits for the
orientation of a spheroidal particle in a shear flow (the so-called Jeffrey orbits), and
suggested that, regardless of initial conditions, the actual orbit would correspond to
a minimum in the energy dissipation; for example, in a shear flow a prolate spheroid
would align with its axis parallel to the vorticity vector. Although experiments by G. I.
Taylor (1923) qualitatively confirmed these results, Saffman’s calculation accounting
for the first influences of inertia demonstrated that the experimental observations
occurred too quickly for inertia to be responsible. In fact, non-Newtonian influences
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are thought to be important for interpreting Taylor’s experiments (Batchelor 1976)
and, in a Newtonian fluid, particles adopt an orientation where the energy dissipation
is a maximum (Harper & Chang 1968). Hence, when just beginning his research
career, Saffman made two significant contributions to viscous flow theory, both of
which remain significant today. There were many more to come!

Professor Saffman made important contributions to such distinct problems as (i)
the lift force on particles when the Reynolds number is small and pointed the
way toward explaining the original experimental observations of Segré & Silberberg
(1962a, b), (ii) a hydrodynamic description of the diffusion of proteins in bilayer
membranes, which illuminated experiments being performed in biology laboratories
(as well as transport processes in our own cells), and (iii) theories for particle motion in
rapidly rotating flows. Other distinct areas of low-Reynolds-number hydrodynamics
that bear Saffman’s footprint include the mechanics of sedimenting suspensions and
compressibility effects in low-Reynolds-number (lubrication) flows. Saffman also made
an important contribution to the description of dispersion accompanying flow in a
porous medium. Each of these, probably less well-known, research contributions is
an important publication that focused on significant, poorly understood scientific
questions and provided answers that remain of fundamental importance and interest
today. Not surprisingly, each of the papers in these different research areas combine
physical insight and asymptotic scaling analyses that are the hallmark of great
theoretical pioneering studies and are characteristic of Saffman’s scientific papers.

In this article I shall try to summarize these less well-known investigations and
put Saffman’s theoretical work in a wider context. The discussion will focus on (i)–
(iii) above, as well as mentioning recent related studies. Emphasis will be given to
theoretical work, since this is most closely related to Saffman’s contributions. It is
not possible to go into great detail but I will attempt to highlight the important
results by way of scaling arguments. In such a short survey of these different subjects
it is also inevitable that significant extensions will be either treated too tersely, or
even worse, not mentioned at all. In any event, I hope that the spirit and style
of Saffman’s fundamental, and still valuable, contributions to low-Reynolds-number
hydrodynamics comes through.

2. Lateral migration: lift in low-Reynolds-number flows
Synopsis: Saffman’s contribution to this problem involved understanding how iner-

tia of the fluid leads to a lift force on particles suspended in flow and the subsequent
drift of the particles across streamlines. The required calculation utilizes singular
perturbation methods and the predictions have been shown to be in good agreement
with experiment.

Suspension flows are common and situations where the particle-scale Reynolds
numbers are small arise in many dispersed two-phase flows with viscous continuous
phases or small suspended particles (e.g. blood flow). In the zero-Reynolds-number
limit, Stokes determined the hydrodynamic (drag) force on a steadily translating
spherical particle and obtained the familiar result that the hydrodynamic force acting
on the particle is F = −6πµaU p, where µ is the fluid viscosity, a the particle radius and
U p the translational velocity relative to the surrounding fluid. There are at least four
main lines of research associated with extending this result, including (1) accounting
for the influence of boundaries, (2) accounting for the influence of fluid and particle
inertia, (3) accounting for the influence of nearby particles or a suspension, and (4)
allowing for non-spherical shapes. In this section we discuss the influence of fluid
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inertia, which can give rise to lift forces, i.e. forces perpendicular to the direction of
translation. The effect of lift is to produce drift of particles relative to the streamline
passing through the particle centre, which can be significant for establishing the
distribution of particles in a given flow.

2.1. Background

In a very viscous fluid a particle that experiences a net force (e.g. a particle with
different density to the surrounding fluid) moves steadily relative to the fluid. Also,
owing to its finite size, a neutrally buoyant particle moves relative to the local fluid if
there is a pressure gradient across the particle, as occurs for example in a parabolic
channel or pipe flow. However, when the undisturbed motion is zero Reynolds number
and unidirectional, the force on a spherical particle is collinear with the flow direction
and no ‘lift’, or sideways, force is possible, as explained originally by Brenner &
Happel (1958), Bretherton (1962) and Saffman (1965). Thus, for pressure-driven flow
in a tube or channel, spherical particles are predicted to not drift across streamlines.
However, experiments by Segré & Silberberg (1962a, b) showed instead that neutrally
buoyant particles in laminar pipe flow migrated across streamlines and tended to
adopt a radial position approximately 0.6Rt from the tube centreline, where Rt is the
tube radius. This rather dramatic result, often referred to as the tubular pinch effect,
has been reproduced in other experiments (e.g. Tachibana 1973; Aoki, Kurosaki &
Anzai 1979; Berge 1990; see also Walz & Grün 1973), and has been studied for both
neutrally buoyant and non-neutrally buoyant particles. Although Saffman’s theoretical
contribution involved calculating the influence of fluid inertia on particle motion, he
also was the first to understand the crucial importance of walls for explaining the
experiments of Segré & Silberberg. To quote Saffman (1965, p. 385):

The full problem is one of great difficulty, as not only is the effect of inertia to be calculated for a particle
in a parabolic velocity profile, but also the presence of the tube walls must be taken into account. The
walls are clearly all important to the existence of the phenomenon, if only because without walls the
particle would never know (so to speak) when it was the appropriate distance from the axis.

Saffman (1965) provided the first detailed analysis illustrating the manner in which
fluid inertia can lead, in the presence of a local shear flow and the particle moving
relative to the fluid, to a cross-stream migration (he did not account for the wall
interaction nor treat the neutrally buoyant limit of most direct relevance to the
Segré–Silberberg experiments). More importantly, the theoretical approach taken by
Saffman (see also Childress 1964) for analysing this flow is very fruitful and has
been adapted by many other workers, e.g. Lovalenti & Brady (1993) used similar
ideas to treat transient particle motion at small but finite Reynolds numbers and
Legendre & Magnaudet (1997) used Saffman’s approach to treat the lift forces on
spherical bubbles and drops. The migration problem for both neutrally buoyant and
non-neutrally buoyant particles has now been well-studied theoretically and compared
(rather successfully) with experiment and applied to other suspension flows beyond
those envisioned originally. A review of research up to 1979 on the influence of fluid
inertia on particle migration is provided by Leal (1980) and more recent research is
summarized and extended by Hogg (1994). In particular, Hogg treats particle motion
in Poiseuille channel flow, considers both horizontal and vertical channels, and clearly
delineates different regimes of shear, non-neutrally buoyant particles, and boundary
influences.
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Figure 1. Motion of a particle relative to a locally linear flow.

Before introducing some mathematical details we note that in general there are at
least two small parameters in this problem: the particle Reynolds number and the
dimensionless distance of the particle from the nearest boundary. The analysis can
be carried out via a regular perturbation expansion when the boundaries lie closer to
the particle than the (large) Oseen distance at which fluid inertia has a comparable
magnitude to viscous effects (Cox & Brenner 1968; Ho & Leal 1974). In the opposite
limit where fluid inertia cannot be neglected at large distances from the particle,
the analysis requires singular perturbation methods, which were developed for the
problem at hand by Saffman (1965). In fact, Saffman comments that the analysis has
the same mathematical spirit as that described by Childress (1964) who considered
inertial effects (the Coriolis acceleration) in particle motion in rotating fluids (see § 4).

2.2. Mathematical description

In order to describe the low-Reynolds-number lift calculation and to focus on the
most important mathematical ideas we denote the fluid velocity by u and consider
a spherical particle with radius a translating at velocity U p and rotating at angular
velocity Ωp in a specified undisturbed flow u∞ (figure 1). It is convenient to express
u∞ relative to the undisturbed motion evaluated at the instantaneous centre of the
particle U∞, and so write u∞ = U∞ + u′∞; Saffman considered the special case of a
shear flow, which we shall denote u′∞ = Γ · r, where r is a position vector measured
relative to the particle centre. Further, it is convenient to express the fluid velocity
in disturbance variables, u′ = u − u∞, measuring deviations from the imposed flow.
The slip velocity of the particle relative to the fluid is defined as V s = U p −U∞. The
Navier–Stokes and continuity equations, written in terms of disturbance variables u′
for a steady flow relative to a coordinate system fixed to the particle, are (e.g. Hogg
1994)

ρ
(−V s · ∇u′ + u′∞ · ∇u′ + u′ · ∇u′∞ + u′ · ∇u′) = −∇p′ + µ∇2u′ and ∇ · u′ = 0. (1)
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The corresponding boundary conditions are

u′ = V s + Ωp ∧ r − u′∞ on Sp, u′ = 0 on boundaries, and u′ → 0 at ∞. (2)

For the special case of a homogeneous shear flow studied by Saffman, equation (1) is

ρ
(−V s · ∇u′ + (Γ · r) · ∇u′ + Γ · u′ + u′ · ∇u′) = −∇p′ + µ∇2u′. (3)

Now, if inertia is neglected and the undisturbed flow is unidirectional, these equa-
tions are incapable of predicting cross-stream migration of a spherical particle. With
small but finite fluid inertia the particle experiences a lift force F L and the corre-
sponding steady migration velocity V L follows from V L = (6πµa)−1 F L. The question,
though, remains of what is F L? There are two particle-scale Reynolds numbers: Rs

based upon the slip velocity V s, i.e. Rs = ρVsa/µ, and RG based on the local shear
rate G, i.e. RG = ρGa2/µ. Saffman’s original analysis considered the limits

Rs � R1/2
G � 1, (4)

which physically correspond to the small effects of fluid inertia first becoming compa-

rable to viscous effects on a length scale aR−1/2
G =

(
ν/G

)1/2
; the more familiar Oseen

length scale owing to inertia associated with the slip motion is comparable to viscous

effects on a length scale aR−1
s = ν/Vs, which is much larger than aR−1/2

G according to
(4). Boundary effects are neglected by Saffman and so must lie at a distance beyond

O(aR−1/2
G ).

Since the Reynolds numbers are small, it is in the far field where inertial effects
are first significant and to analyse the fluid motion in this far field Saffman made the
important observation that the particle can be replaced by a point particle and the
equations linearized. Thus, assuming (4), the far field is studied according to (these
equations could be made dimensionless, but for this order-of-magnitude discussion it
seemed reasonable to keep the equations dimensional)

ρ
(
(Γ · r) · ∇u′ + Γ · u′) = −∇p′ + µ∇2u′ + 6πµaV sδ(r), (5)

as a particle with a finite slip velocity exerts a force on the fluid 6πaµV s. Balancing the

inertial terms on the large length scale r = O(aR−1/2
G ) with the force/volume shows

O(6πaµVs/r
3) = O(ρu′G), which produces a velocity field u′ = O(6πR1/2

G Vs). The veloc-
ity gradients associated with this inertially generated velocity field produce a correction
to the force acting on the particle, the so-called lift force, FL = O(6πaµRG1/2Vs). In
particular, for a simple shear flow, with the slip velocity parallel to the flow direction,
Saffman’s detailed calculation yielded the lift force (often called the Saffman lift)

FL = 6.46aµR1/2
G Vs (6)

or a lift velocity VL = 0.343R1/2
G Vs directed across the undisturbed streamlines moving

opposite to Vs.†
The implication of this result for particle motion in pipe flows is evident, at least

for those situations where the parabolic part of the flow is insignificant. If the particle

† In fact, Saffman made a small algebra error in the lift calculation in his published paper; a
factor of 4π2 was lost in evaluating the integral expression for the lift. In a communication to the
author, Professor Saffman commented that this error “was found experimentally by I.D. Chang,
who devised an ingenious experiment to measure the lift and found that there was a continuous
discrepancy of about 40 between the predicted lift and the measured lift. Clearly, the 40 must be
coming from a 4π2 in the theory, and knowing what to look for, Chang found the error.”
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moves faster than the local fluid (Vs > 0), then the particle moves away from the axis,
while if the particle lags the local velocity (Vs < 0), then the particle moves toward
the axis (e.g. Saffman 1965, p. 394). Experiments (Aoki et al. 1979) demonstrate that
the equilibrium position attained in tube flow can be shifted towards the boundary if
the particle exceeds the local flow or toward the axis if the particle lags the flow (the
particle speed was adjusted by changing the density difference between the particle
and the fluid). These experimental results are in agreement with the predictions
originally made by Saffman.

Research since Saffman’s paper: The influence of the slip-velocity-generated inertial

flow (V s · ∇u′ in (3)) was considered by McLaughlin (1991). Setting ε = R1/2
G /Rs,

which represents the ratio of the first two terms on the left-hand side of (3), then

the lift velocity has the form VL = 0.343R1/2
G Vsf(ε) and McLaughlin calculated f(ε)

numerically. One feature of the numerical results is that for R1/2
G /Rs < 0.22 the

direction of the lift velocity is reversed and the particle moves (very slowly) in the
direction of the faster streamlines. The case of spherical drops and bubbles, rather
than rigid spheres, was addressed recently by Legendre & Magnaudet (1997), who
noted that the lift result was generated by far-field influences and hence the viscosity
contrast between droplets µd and the continuous phase µ enters very simply. With

β = (3µd + 2µ)/(µd + µ), the drift speed has the form VL = 0.343R1/2
G Vsβ

2f(ε). The
dependence on β2 means that the lift force on a clean gas bubble is smaller than
that on a rigid sphere (translating at the same speed) by a factor (2/3)2. McLaughlin
(1993) extended the solid sphere results to account for the presence of a nearby planar
boundary. The generalization of Saffman’s calculation to three-dimensional bodies in
simple shear flow has been given by Harper & Chang (1968).

The case of neutrally buoyant spheres corresponds to a stresslet forcing in the
far field. This case was considered by Schonberg & Hinch (1989) using a theoretical
analysis in the spirit of Saffman’s calculation. The general case with both point force
and stresslet forcings in the far field was described by Hogg (1994) and more recently
by Asmolov (1999); note that there are some small numerical differences between
some of the results reported by Hogg and Asmolov. With reference to (1) the far field
is analysed according to

ρ
(−V s · ∇u′ + u′∞ · ∇u′ + u′ · ∇u′∞) = −∇p′ + µ∇2u′ + 6πµaV sδ(r) + S · ∇δ(r), (7)

where S is the particle stresslet, which for a rigid sphere is given by S = (20πµa3/3)E∞,
with E∞ the rate-of-strain tensor of the undisturbed flow. For the case of a neutrally
buoyant particle, V s = 0, and the inertia-induced migration velocity has a mag-
nitude established by balancing far-field inertia O(ρu′G) with the stresslet driving

force/volume O(µa3G/r4) on a length scale r = O(aR−1/2
G ). The force-free particles

translate with this velocity, hence the migration speed is O(aGRG). Schonberg &
Hinch included the influence of walls and found that particles migrate across the
channel to a Reynolds-number-dependent equilibrium distance between the centre-
line and wall with reasonable agreement between their channel-flow calculations and
the original tube-flow experiments of Segré & Silberberg (1962a, b).

For the case of particle motions in channels and tubes, the calculations of Schonberg
& Hinch (1989) (and Asmolov 1999) are to be distinguished from the calculations of
Ho & Leal (1974). The former used singular perturbation methods to treat the case
where the influence of fluid inertia was significant on length scales comparable to, or

smaller than, the distance ` to the closest wall, i.e. ` � aR−1/2
G , while the latter used
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regular perturbation methods to analyse the opposite limit, ` � aR−1/2
G . It is thus

convenient to organize the possible cases according to the magnitude of a channel
Reynolds number, Rc = RG/(a/`)

2, representing the (square of the) distance to the
closest boundary relative to the (square of the) distance where inertial influences are
important (e.g. Hogg 1994, table 1).

In addition, the lift calculation has been performed by generalizing the simple
shear flow to an arbitrary linear flow, i.e. u′∞ = Γ · r. This flow was considered by
Miyazaki, Bedeaux & Avalos (1995) with specific results given for a simple shear flow.
It is interesting to note that there appears to be some (reasonably small) numerical
discrepancy between these latest results and those reported by Harper & Chang
(1968) and Hogg (1994, Appendix E).

As a final recent application that utilizes some of the singular perturbation ideas
pioneered by Saffman for treating the influence of fluid inertia, we draw the readers’
attention to the work of Lovalenti & Brady (1993) who provide a thorough in-
vestigation of forces that act during the time-dependent motion of a particle in a
low-Reynolds-number flow; see also Lawrence & Mei (1995).

3. Brownian motion in thin liquid films
Synopsis: Saffman’s contribution to this problem was to recognize the important

role that the liquid surrounding a fluid membrane has on the translational resistance
experienced by particles moving along the membrane. This work was published
jointly with Max Delbrück, a Caltech biologist who shared the 1969 Nobel Prize in
Physiology or Medicine (for work interpreting the genetic code and its role in protein
synthesis).

Biological membranes have a common structure that consists of a bilayer of lipid
and protein molecules approximately 5 nm thick (Alberts et al. 1994, Chap. 10). In the
early 1970s experimental evidence accumulated that the cell membrane had fluid-like
properties (Singer & Nicholson 1972). In particular, protein molecules trapped in the
membrane, and even the lipid molecules that constitute most of the membrane, were
observed to diffuse along the membrane. Both experiments with synthetic membranes
and actual biological membranes have given similar results and demonstrate that
flow in biological membranes may be modelled, at least locally, as two-dimensional
flow parallel to the membrane. It is also recognized that the fluidity is biologically
important (Alberts et al., p. 480). An interesting question then is to determine the
lateral diffusion coefficient and how it depends on the size of the diffusing particle, the
viscosity of the membrane, the viscosity of the surrounding phases, the concentration
of membrane-trapped particles, and the presence of nearby boundaries.

3.1. The hydrodynamic model

The Stokes–Einstein equation, established on the basis of standard thermodynamic
arguments (e.g. Batchelor 1976), equates the (scalar) translational diffusivity D to the
ratio of the thermal energy kBT , where kB is Boltzmann’s constant and T is the
absolute temperature, to the particle’s hydrodynamic resistance, ζ = F/U, where F is
the force acting on a particle translating with velocity U:

D =
kBT

F/U
. (8)

The biophysically relevant question is to establish the form of the resistance coefficient
ζ for a membrane-bound particle.
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Figure 2. A hydrodynamic model of a membrane-bound object, modelled as a rigid cylinder,
translating in a fluid surface film above a (Newtonian) subphase of finite depth.

Saffman & Delbrück (1975) and Saffman (1976) considered this problem theoret-
ically for the case of a membrane-trapped particle, modelled as a circular cylinder
spanning the membrane (figure 2). The membrane was treated as an infinite thin
planar layer of viscous fluid surrounded on each side by a fluid of lower viscosity
(water). There are, however, circumstances where natural membranes are surrounded
by more complicated structures, which may be more viscous than the lipid bilayer
(e.g. Vaz et al. 1987).

Motion occurs in the low-Reynolds-number flow limit and so the problem at first
sight is simply to determine the resistance coefficient (in this case the force/length/
velocity) for a cylinder translating in a flow where inertia is neglected. This two-
dimensional flow problem, though, has no solution owing to a disturbance velocity
that grows logarithmically with distance from the cylinder (e.g. Leal 1992, p. 492) –
the well-known Stokes’s paradox. The conundrum is usually resolved by accounting
either for boundaries at a finite distance, or the presence of inertia in the fluid, which
is important at large distances, or for the finite size (aspect ratio) of the cylinder. In
Saffman’s own words (1976, p. 594):

To obtain a finite mobility so that the Einstein relation [D = kBT/ζ] can be employed, we can either
introduce the convective acceleration terms (i.e. use the Oseen drag), or realize that the membrane is of
finite size and obtain a mobility which varies inversely with the logarithm of the sheet radius, or take
account of the viscosity of the aqueous fluid outside the sheet. The first approach is not viable because
it is not enough for the mobility to be finite: it must be constant, independent of the velocity, for the
Einstein formula. The second approach is simple ... The third appears, on examination of the results and
insertion of typical values for the parameters, to be most relevant.

Thus, the important observation put forth was the recognition of the hydrodynamic
importance of the surrounding fluid. Saffman (1976) showed that the logarithmic
divergence characteristic of the two-dimensional flow due to a translating cylinder
can be ‘cut-off’ by accounting for viscous resistance from the surrounding fluid and
that this physical effect is expected to be more significant than either the presence
of boundaries at large distances or the effect of inertia. Below I outline the idea of
Saffman’s (1976) calculation which makes use of the ideas of matched asymptotic
expansions to treat an analytical representation of the force/velocity relation derived
initially as a system of dual integral equations. Experimental evidence for the Saffman–
Delbrück picture of protein and lipid diffusion along membranes is discussed by Peters
& Cherry (1982), Clegg & Vaz (1985) and Vaz et al. (1987). The hydrodynamic model
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is also useful for describing the diffusion of small particles trapped in soap films
(Cheung et al. 1996).

3.2. The mathematical description

The mathematical model is shown in figure 2. The membrane is modelled as a
constant-viscosity Newtonian fluid of viscosity µm with thickness h and the surround-
ing fluid phases have viscosity µ. The diffusing particle is modelled as a cylinder of
radius R which spans the membrane and translates with velocity U . In particular,
Saffman & Delbrück were concerned with the limit of an infinite fluid phase on
either side of the membrane. I shall first describe their results and then consider
the influence of a finite subphase of depth H; in both cases note that mathematical
formulae given here account for the effect of fluid on one side only.

Detailed mathematical arguments are given in Saffman (1976; see also Stone &
Ajdari 1998). The basic ideas are straightforward to describe and are based on the
assumption that a dimensionless viscosity ratio Λ = Rµ/hµm � 1 for proteins (R ≈ h
and µm ≈ 100µ are common). If one considers the purely two-dimensional problem,
then the disturbance velocity um(r) in the membrane at distance r from a cylinder of
radius R that experiences a force/length, F/h, is

um(r) ≈ F/h

µm
ln (r/R). (9)

This logarithmic divergence is common in two-dimensional problems and is the
mathematical origin of Stokes’s paradox for a translating cylinder of infinite length.
The drag exerted on the membrane by the surrounding fluid phase is not completely
negligible however, and is important on a length scale `m that may be estimated by
accounting for viscous forces per unit volume exerted on the sheet:

O

(
µmu

`2
m

)
= O

(
µu

h`m

)
⇒ `m = O

(
µmh

µ

)
, (10)

where the estimate follows by recognizing that the surrounding fluid exerts a stress
O(µu/`m) that is assumed to be distributed over the membrane thickness h. In the
limit Λ = Rµ/hµm � 1, the force on the cylinder is dominated by velocity gradients
that occur in the membrane and these velocity variations thus occur over a length
scale O(R ln (`m/R)). Hence, the order of magnitude of the force on the cylinder
follows from

F = O

(
µmU

R ln (`m/R)
2πRh

)
= O

(
2πµmhU

ln (`m/R)

)
= O

(
2πµRU

Λ ln (`m/R)

)
, (11)

since Λ−1 = `m/R. This estimate is expected to resolve Stokes’s paradox, as contrasted
say with the influence of boundaries at a finite distance, provided `m is smaller than
the finite size of the membrane, as it is in most practical cases (`m ≈ 100R which is
generally much smaller than the typical radius of curvature or size of the membrane).
Saffman’s exact calculation via a singular perturbation method applied to a dual
integral representation of the detailed velocity field yielded

F Saffman = − 4πηRU

Λ
[
ln (2/Λ)− γ] (Λ� 1), (12)

where γ ≈ 0.5772 is Euler’s constant (the force from fluid on only one side of the
membrane is included). In addition, Saffman calculated the torque required to rotate
a membrane-trapped particle, but this was straightforward as no divergences are
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encountered. Some experimental evidence for the reasonableness of the Saffman–
Delbrück model was mentioned at the end of § 3.1.

Research since Saffman’s papers: The problem was studied further by Hughes,
Pailthorpe & White (1981) who developed an improved asymptotic expansion of
the force–velocity relation as a function of the viscosity ratio parameter Λ:

FHughes = − 4πηRU

Λ
[
ln (2/Λ)− γ + (4/π)Λ− 1

2
Λ2 ln (2/Λ)

] (Λ < 1). (13)

These authors showed that (13) is in excellent agreement with numerical solutions of
the original integral equation solution for Λ < 0.6.

An alternative study of the resistance offered by a thin layer of surrounding fluid
was done by Evans & Sackmann (1988), who were motivated by scientific applications
where artificial or biological membranes are coupled directly to a rigid substrate (e.g.
Sackmann 1996). In this case a membrane-trapped particle experiences an increased
viscous force from the subphase owing to the stronger frictional effects of the thin
sublayer liquid (depth H). Evans & Sackmann found that the force acting on the
translating particle is

F E−S = −4πηRU

Λ

[
1
2
ε2 +

εK1(ε)

K0(ε)

]
, ε2 = Λ

R

H
, (14)

where the Kn(s) are modified Bessel functions.
Finally, Stone & Ajdari (1998) studied the coupling of motion of a membrane-

trapped particle with a finite-depth subphase (not necessarily thin). For the limit
Λ = Rµ/hµm � 1, the logarithmically growing disturbance velocity (9) may be cut-off
by viscous stresses from the subphase (effectively from a sublayer shear flow) on a
length scale `H intermediate between R and `m, where

O

(
µmu

`2
H

)
= O

( µu
hH

)
⇒ `H = O

(
µmhH

µ

)1/2

. (15)

The drag force is then expected to have magnitude

F = O

(
µmU

R ln (`H/R)
2πRh

)
= O

(
2πµmhU

ln (`H/R)

)
, (16)

and a detailed calculation gives

F finite−depth = − 4πµRU

Λ
[
ln (ΛR/4H)−1/2 − γ] . (17)

The above results characterize the resistance offered by the subphase fluid. For the
limit Λ� 1, we expect the original Saffman–Delbrück formula (12) to be useful when
R � `m < `H , while the finite-depth equivalent (17) is a good approximation to the
force–velocity relation when R � `H < `m. The Evans–Sackmann thin-film formula
(14) is useful provided the film is sufficiently thin, which requires H < `m.

The Saffman–Delbrück approach is also the starting point for other investigations
concerned with membrane transport. For example, Koch, Hammer and coworkers
have explored the influence on diffusion of a finite concentration of protein par-
ticles using both analytical as well as numerical methods (e.g. Bussell, Hammer &
Koch 1994; Dodd et al. 1995). These authors have shown that accounting for such
finite concentrations can explain the reduced diffusivities that are often measured.
Furthermore, they point out that in plasma membranes some of the proteins are
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actually fixed, so that the proteins free to diffuse see a medium more akin to a fixed
bed, which more effectively eliminates long-range motions (Brinkman screening).
In another line of research, experiments with both biological and artificial lipid
monolayers that exist in the two-phase regime demonstrate that a variety of two-
dimensional patterns can be formed (e.g. McConnell 1991). The dynamics of these
systems have been modelled using a combination of electrostatic driving forces
characteristic of the dipolar molecules that make up the membrane and hydrodynamic
resistance (predominantly from the subphase) that is modelled using the Saffman–
Delbrück approach (e.g. Stone & McConnell 1995; De Koker 1996). Finally, a
recent investigation has measured the force accompanying controlled translation of a
membrane-trapped disk, and, using an analytical solution for the thin subphase limit,
determines the viscosity of a surfactant monolayer (Barentin et al. 1999).

4. Particle motion in rotating viscous flows
Synopsis: In joint work with Derek Moore, a mathematician at Imperial College,

Saffman investigated the structure of viscous boundary layers which are crucially
important when particles move in rapidly rotating fluids. The theoretical predictions
have been shown to be in good agreement with experiments, and include some rather
surprising flow features.

Rotating fluid motions occur in industrial devices such as centrifuges or in localized
vortical regions of flow. The distribution of particles in such flows is determined by the
hydrodynamic and external forces acting and, as the background solid-body rotation
changes the local flow field around suspended particles, the hydrodynamic forces
are in fact different than just a simple Stokes drag. For example, when an object
translates relative to a fluid rotating with angular velocity Ω it tends to drag along
with it a column of fluid that lies parallel to the rotation axis. This rather unexpected
effect was first investigated experimentally by Taylor (1922), who studied motions
both parallel and transverse to the rotation axis. The basic mathematical reason for
the existence of such columnar regions of fluid, the so-called Taylor columns, can
be traced to the Taylor–Proudman theorem (e.g. Greenspan 1968), which states that
for steady motions in a rotating flow in which viscous and inertial influences are
negligible Ω · ∇u = 0, i.e. the velocity does not vary along the direction of the rotation
axis.

Most of the theoretical modelling of particle motion in rotating flows begins with
the Navier–Stokes equation written for a coordinate system rotating steadily with
angular velocity Ω (Batchelor 1967, p. 162):

∂u

∂t
+ u · ∇u+ 2Ω ∧ u = −1

ρ
∇pd + ν∇2u, (18)

where pd is the dynamic pressure incorporating gravitational and centrifugal effects.
For steady motions in the limit that convective inertial effects are small (the low-
Rossby-number limit, U/Ωa � 1) we arrive at the dimensionless equations for
rotating viscous flows:

2Tez ∧ u = −∇pd + ∇2u, ∇ · u = 0, (19)

where lengths have been scaled by the particle radius a, velocities by the translation
speed U, pressure by µU/a, and the Taylor number T is defined as

T =
Ωa2

ν
. (20)
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Figure 3. A schematic illustration of the flow induced by a low-viscosity drop rising at velocity
U between rigid horizontal boundaries rotating at angular velocity Ω. The drop interface is
characterized by a double Ekman layer, and the internal flow by a weak downward flow (Bush et
al. 1995). The swirl velocities fore and aft of the rising drop are indicated also.

Equation (19), a linearized version of the Navier–Stokes equation, was apparently
first applied to particle motions by Morrison & Morgan (1956).

4.1. Axial particle motion

The flow field and forces accompanying steady particle motion in the low-Rossby-
number, high-Taylor-number limit were considered theoretically in a series of papers
by Moore & Saffman (1968, 1969a, b). First, Moore & Saffman studied the on-axis rise
of a particle with speed U in a fluid bounded above and below by rigid horizontal
surfaces. The theoretical description was predicated on the existence of a Taylor
column spanning the entire distance between the horizontal boundaries (figure 3).
Their paper provides a clear physical picture showing the origin of the drag as arising
from a pressure difference generated from a difference in swirl velocities that exist
fore and aft of the translating particle. In addition, there are viscous boundary layers
along the particle surface and the horizontal boundaries. A sketch of the typical fluid
motions to be expected in the high-Taylor-number, bounded-Taylor-column limit is
given in figure 3 for the case of a drop of liquid rising through a rapidly rotating
fluid (Bush, Stone & Bloxham 1995); note the swirls produced ahead of (behind) the
particle by shortening (lengthening) the vortex lines in the main body of the Taylor
column and the existence of boundary layers exterior and interior to the drop surface.

The physical argument given by Moore & Saffman (1968) is very instructive
for understanding the magnitude of the high-Taylor-number (T � 1), pressure-
dominated drag force. We will discuss this limit with reference to (19). In particular,
on the top (bottom) rigid boundary there is a viscous boundary layer with thickness
δ ∝ aT−1/2, and the flow into this boundary layer from the main column of fluid
associated with the Taylor column and the rising particle induces a swirl velocity of
magnitude O(UT1/2) that is transmitted, according to the Taylor–Proudman theorem,
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to the entire column above (below) the particle. According to (19) the swirls require
a variation of pressure of magnitude O((µU/a)T3/2) and consequently the force has
magnitude O(µUaT3/2), which is clearly much larger than the corresponding Stokes
drag. Moore & Saffman then provide the analytical details for treating the Ekman
(boundary) layers along the surfaces, and coupling them via mass conservation, to
arrive at a complete analytical description of the flow.

Research since the Moore & Saffman papers: A complete picture of the flow requires
fluid to return from the fore to the aft of the particle – the usual picture of this
transport is via narrow Stewartson layers, along the sides of the Taylor column, as
characterized analytically by Moore & Saffman (1969a). An important assumption
in the above description of the bounded flow is that the layer depth H exceeds the
boundary layer thickness, H � aT−1/2, and further that the Taylor column actually
spans the entire depth of the bounded fluid region, which requires H � aT1/2. This
latter assumption was relaxed by Hocking, Moore & Walton (1979) and discussed in
more detail by Ungarish & Vedensky (1995) who succeeded in presenting a solution
to (19) for arbitrary Taylor numbers for a thin circular disk midway between the
boundaries. The case of axial motion in an unbounded fluid was treated in the low-
Taylor-number limit by Childress (1964; spheres) and studies allowing for arbitrary
Taylor numbers are reported by Vedensky & Ungarish (1994; thin disks) and Tanzosh
& Stone (1994; spheres).

Experiments by Maxworthy (1968) exhibited some discrepancies with the Moore &
Saffman ‘short-container’ theory, though the trends were all correct. The calculations
by Hocking et al. (1979) did not provide an improved comparison with experiment.
Additional experiments were conducted by Bush et al. (1995) with droplets and
discrepancies were also noted when the experimental results were compared with
an appropriate generalization of the Moore–Saffman theory. Ungarish (1996) has
further investigated the discrepancies between theory and experiment and argues that
the differences may not be due to the neglect of inertial influences in the theory, but
rather are probably due to viscous influences not captured by the asymptotic (T� 1)
boundary layer ideas.

An interesting application of axial particle motion in rapidly rotating flows, as
described by the theory of Moore & Saffman, is the so-called spinning drop elec-
trophorometer (apparently developed originally in the 1920s). In this device, applica-
tion of an electric field along the axis of a cylindrical tube causes translation of a small
suspended bubble (electrophoresis) and rapid rotation of the cylindrical tube is used to
maintain the bubble along the centreline. The measured translation speed of the bub-
ble, coupled with the force/velocity relation in a rotating system as described in the
papers mentioned above, is used to deduce the surface zeta potential. A hydrodynamic
description of this process is given by Sherwood (1986); see also Graciaa et al. (1995).

4.2. Transverse particle motion

The case of transverse particle motion according to (19) is in some ways considerably
more difficult to quantify. The flow field was discussed by Moore & Saffman (1969b)
in the high-Taylor-number limit for transverse translation of a thin disk in a bounded
container such that the Taylor column again spans the fluid layer. They obtained the
surprising predictions that fluid particles can cross the Taylor column associated with
thin objects (i.e. the Taylor column is not a stream surface as originally identified
by Taylor (1922) in experiments with transverse translation of spheres) and the fluid
particle paths are bent through an angle of approximately 18◦ as they pass over the
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disk. Moore & Saffman also compared their results to the more familiar case of ‘fat’
bodies, i.e. those whose thickness is comparable to the Ekman layer thickness. In an
appendix to the paper, Maxworthy provided an experimental verification that fluid
particles do indeed pass over the transversely moving particle where they typically are
rotated through an angle of 20◦, which is in excellent agreement with the theoretical
predictions.

Research since the Moore & Saffman paper: Additional theoretical studies of (19) for
transverse particle motion in unbounded flows include the translation of a sphere in
the low-Taylor-number limit (Herron, Davis & Bretherton 1975) and the translation
of a thin disk for arbitrary Taylor numbers (Tanzosh & Stone 1995); Moore &
Saffman (1969b) treat the high-Taylor-number limit. It is interesting to note that
there are well-known analogies between the governing equations for rotating and
stratified flows (e.g. Veronis 1970), and Foster & Saffman (1970) considered the
transverse motion of a particle in a stratified medium. However, the theoretical
structure of the problem for particle translation does not have many similarities
with the Moore–Saffman description outlined above owing to the different form of
boundary conditions imposed on the density distribution.

The reader interested in a discussion of rotating suspension flows (e.g. centrifugal
separation), which utilizes some of the fundamental results from studies of isolated
particles in rotating viscous flows, is referred to Ungarish (1993). For a recent review of
the literature on particle motion in rotating flows see Bush, Stone & Tanzosh (1994).

5. Additional contributions
It is impossible to provide even a superficial description of the many other con-

tributions Saffman made to fluid dynamics and transport processes. Here it seems
wise to indicate three additional contributions, which again serve to illustrate the
breadth and importance of his scientific research: (1) dispersion in porous materi-
als, (2) suspension mechanics with a focus on sedimentation, and (3) compressible,
low-Reynolds-number flows.

5.1. Dispersion in porous media

Flow in porous materials occurs in a wide variety of industrial and man-made
settings. The dispersal of a chemical is an important transport process and it is now
well appreciated that the spreading, or dispersion, of an injected tracer, naturally
occurring chemical, or pollutant in porous materials depends on the average velocity
(U) through the medium and the typical pore size (`) of the medium. One of the
first studies to quantify the lateral and longitudinal dispersion processes in a porous
medium was given by Saffman (1959, 1960), who recognized the important role
played by molecular diffusion (Dm), even when its magnitude is small; a closely
related independent investigation was reported by Josselin de Jong (1958).

Saffman’s papers on dispersion use a simplified description of the actual transport
process in the form of a model based upon a network of capillary tubes and focus on
the stochastic element of the transport inevitably introduced by the complex under-
lying microstructure (so-called mechanical dispersion). The important dimensionless
parameter is the Péclet number, defined as P = U`/Dm. The 1959 paper treats the
porous medium as an assembly of randomly oriented straight uniform pores, intro-
duces a statistical description of the transport process in terms of a random walk,
with molecular diffusion entering as a parameter affecting the time step in the random
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walk, and treats P � 1. The 1960 paper considers P = O(1). Saffman anticipates
the most important physical processes and the quantitative manner in which they
affect spreading of a solute, which is characterized by lateral (D⊥) and longitudinal
(D‖) dispersivities. In particular, as most transport processes have P � 1, Saffman
demonstrates that for lateral dispersion D⊥/Dm = O(P), while the magnitude of the
longitudinal dispersivity scales as D‖/Dm = O(P ln P).

In fact, it is now recognized (e.g. Koch & Brady 1985) that it is useful to treat
the dispersion process in terms of (a) mechanical dispersion, where D/Dm = O(P),
(b) holdup dispersion, due to regions of trapped flow or closed streamlines, for
which D/Dm = O(P2) analogous to the familiar Taylor–Aris dispersion result for the
spreading of a pulse in a laminar, parabolic tube or channel flow, and (c) boundary
layer dispersion, for which D/Dm = O(P ln P), as recognized by Saffman and Josselin
de Jong. This last result may be best explained as a consequence of the interplay of
convection and diffusion in a thin boundary layer of thickness δ ∝ `P−1/3 adjacent
to rigid boundaries (Koch & Brady 1985). For an excellent discussion of both
experiments on and theory of dispersion in porous materials, the reader is referred to
a multi-author section on dispersion in Guyon, Nadal & Pomeau (1988).

In effect, Saffman was among the first researchers to clearly explain the common
result that the mechanical dispersivity D ∝ U` results from spreading due to the
stochastic nature of the velocity (produced by the complex microstructure) and hence
is a transport mechanism independent of molecular diffusion. Also, the possibility of
high-Péclet-number dispersion scaling as P ln P, which is in good agreement with the
data (e.g. Koch & Brady 1985), can be traced to Saffman’s first paper in this field.

5.2. Settling speed of suspensions

A long-standing problem in suspension mechanics is to predict the rate of sedimen-
tation of a random suspension of rigid, spherical particles. An isolated sphere with
density ρp sediments with its Stokes fall velocity U s = 2(ρp − ρ)a2g/(9µ). However,
the average fall velocity U sed in a suspension of volume fraction φ is reduced from its
Stokes value, largely due to the back-flow that accompanies sedimentation; Batchelor
(1972) finds U sed = U s(1− 6.55φ) for φ� 1. The seemingly straightforward calcula-
tion of the first correction to the sedimentation velocity is complicated enormously
by the long-range character of disturbance velocities in Stokes flows. Two closely
related flow problems are the sedimentation rate of a regular array of spheres (the
particles experience the same force and velocity, in contrast to a sedimenting random
suspension where the forces on each particle are the same but the velocities differ) and
the translation of, or the flow through, a random array of fixed spheres (velocities
specified but the forces on the particles differ). Saffman demonstrated the precise
reason why these three problems, despite seeming to be very similar, can give different
scaling laws for the change in the mean velocity as a function of the volume fraction
of suspended particles. The reader may note that a fourth problem in this class is the
average stress in a two-phase suspension (e.g. Batchelor 1976; Hinch 1977), while a
fifth is the variance of the sedimentation velocity of a suspension (Caflisch & Luke
1985; Koch & Shaqfeh 1991). This latter problem has attracted much recent attention
owing to experimental results that are in apparent disagreement with the theoretical
predictions (Segrè, Herbolzheimer & Chaiken 1997; see also Brenner 1999).

Saffman (1973) provided a useful method for thinking about this class of problems
by making the point-particle approximation, where the particles are replaced by a
multipole distribution of forces (force, torque, stresslet) at their centres. For the case of
sedimentation only the monopole or Stokeslet is needed. The basic question concerns
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the concentration dependence in the relation of the average force on the particles to
the average velocity in the system. Saffman’s paper clearly demonstrates the manner
in which the particle distribution (periodic array or random) and the application of
forces (identical forces for sedimentation but a distribution of forces for a uniformly
translating, or flow through, a fixed random array) leads to different first corrections
as functions of φ to the average velocity. In particular, for a regular periodic array
of particles the change in the sedimentation velocity is O(φ1/3), while for a random
distribution of sedimenting particles (free to move relative to one another) the change
in the sedimentation speed is O(φ). In the case of translation of, or flow through, a
fixed random array (which serves as a model of a porous media) the change in the
average velocity is proportional to O(φ1/2), i.e. Brinkman screening.

It is now possible to do complete computer simulations for these suspension flow
problems (e.g. Brady & Bossis 1988). Nonetheless, Saffman’s paper introduces a
common approach to these seemingly different problems, and will likely remain a
useful educational medium for future researchers.

5.3. Compressibility effects at low Reynolds numbers

As an additional area of research to include in this discussion, we note that Saffman
collaborated on two papers studying the effect of compressibility in lubrication con-
figurations. In particular, Taylor & Saffman (1957) investigated air flow in the narrow
gap between a rotating disk and a rigid plane. The analysis modifies the usual
Reynolds lubrication equation to account for compressibility of the lubricant and
two aspects of the experimental configuration are studied in detail: (a) time-periodic
oscillations of the spinning disk in a direction parallel to the rotation axis and (b)
slightly non-parallel surfaces. The results of the analysis provide some rational expla-
nation for experimental measurements earlier ascribed to non-Newtonian properties
of air. Also, numerical solutions (apparently some of the first) are given for the
effect of compressibility on the pressure distribution in the narrow gas film between
rotating and fixed inclined surfaces. Later, a more detailed numerical and asymptotic
investigation of compressibility effects was made of this latter problem (Cole, Keller
& Saffman 1967). These studies, and in particular the 1957 paper, remain of value
today since compressibility (and slip effects) during gas flows in narrow geometries
are common in microelectromechanical (MEMS) devices (e.g. Harley et al. 1995) and
air bearing sliders used in computer hard disk drives (Witelski 1998).

This article is dedicated to Professor Philip G. Saffman, whose scientific papers
have contributed immensely to the author’s education in fluid dynamics. The breadth
and depth of Professor Saffman’s scientific insights, as well as his style of combining
physical insights and mathematical arguments and analyses, have often served to
inspire the author, who recognizes the immense contribution Saffman has made to
the fluid dynamics, mathematics and physics communities.

The author has benefited from many conversations over the years with colleagues
interested in the viscous flow problems described in this paper. In particular, J. W. M.
Bush, A. M. J. Davis, D. W. Moore, J. D. Sherwood, J. Tanzosh and M. Ungarish are
thanked for discussions concerning particle motion in rotating flows, A. Ajdari, R. De
Koker, D. A. Edwards, D. L. Koch and H. M. McConnell are thanked for discussions
concerning particle motion in thin viscous layers, and J. F. Brady, E. J. Hinch, A. J.
Hogg and P. M. Lovalenti are thanked for discussions concerning inertial corrections
to viscous flows problems. Finally, the author thanks M. P. Brenner, P. M. Lovalenti
and P. G. Saffman for helpful comments on the manuscript.
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